/’ AD=A107 238  WASHINGTON UNIV SEATTLE DEPT OF MECHANICAL ENGINEERING F76 20/11
DYNAMIC CRACK CURVING = A PHOTOELASTIC EVALUATION.({U)
OCT 81 M RAMULUs A S KOBAYASHI NOMHQ-'Ie-c-ooGo
UNCLASSIFIED Tﬂ-“l




W

2 123

o2
o

fise

I
“ 29

flLL
= “l“ 1.8

IL2s i pie

.

o

MICROCOPY Rtb()LLHION' ST CHART

A Ui ik




OIS FILE COPY

ADA107238

(@3 INLF

Office of Naval Research
Contract N00014-76-C-0060 NR 064-478

Technical Report No. 41

DYNAMIC CRACK CURVING - A PHOTOELASTIC EVALUATION

> . DTIC

ELECTER
M. Ramulu and A. S. Kobayashi NOV 1 3 198t *

October 1981

The research reported in this technical report was made possible

through support extended to the Department of Mechanical Engineering,

University of Washington, by the Office of Naval Research under Contract

N00O014-76-C-0060 NR 064-478. Reproduction in whole or in part is permitted

for any purpose of the United States Govermment.

Department of Mechanical Engineering
College of Engineering |

University of Washington

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

11! 2 058




“Tre———T

L em bl g Sz vt b . A M e pmb g A B TR SR Nt Y L b g AN e, T A Al

J DYNAMIC CRACK CURVING - A PHOTOELASTIC EVALUATION

by

M. Ramulu* and A. S. Kobayashi**
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. A dynamic crack curving criterion, which is valid under combined modes

1 and 11 or mode 1 loading and which is based on either the maximum circum-

ferential stress or minimum strain energy density factor at a reference

. _ 1 K202 o
distance of rj = 128n(cox) v (c,cl,cz) crack deformation, is developed.

Directional stability of a mode I crack propagation is attained when

ro>res where r_ for Homalite-100 was de*2rmmined from dynamic photoelastic

c
' experiments. In the presence of mode II crack deformation, positive remote
| stress camponent, i.e., °6x>0 and negative remote stress component, i.e.,

oox<0, was found to enhance and supress crack curving, respectively.

*Graduate student, University of Washington, Department of Mechanical
- Engineering, Seattle, WA 98195 e

-

‘ **Professor, University of Washington, Department of Mechanical Engineer-
ing,Seattle, WA 98195
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INTRODUCTION:
Crack extension and fracture criteria under combined tension and shear
loading are based on either energy or maximum circumferential stress criteria.

The maximum circumferential stress,(Jgp, criterion was first used by Erdogan and

Sih [1], for predicting the direction,él, of an angled crack. Williams and
Ewing [2] extended this theory by incorporating the second order term of Jox 1N
the Williams eigenfunction expansion. Finnie and Saith [3] corrected an over-
sight in the above angle crack analysis and obtained an improved agreement be-
tween predictéd and experimental data. Streit and Finnie [4] further proposed a

crack stability model where directional stability of a mode I crack propagation

is maintained when a characteristic distance of o from the crack tip satisfies

rOZrC, where r_ is a critical distance ahead of the crack tip. Cotterell and

c
Rice [5] derived the necessary condition for a slightly curved, quasi-static,
mixed méde crack growth where stability of crack growth was also governed by

Oox Karihaloo et al. [6], recently showed that crack curving can occur without
kinking under vanishing Tox and mode II stress intensity factor, but with non-

vanishing derivative of KII with respéct to the crack length.

# As for the energy approach, Hussain et al., [7], Palaniswamy and Knauss

t [8], Gupta [9], Wu [10], and Nemat-Nasser et al. [11-12], among others, predict-

ed the direction of a kinked crack based on a maximum strain energy release rate

‘3: ' criterion. Sih [13], on the other hand, proposed the S-theory where the
; direction of crack kinking coincides with the direction of the minimum strain 4
, 3 energy density. Theocaris and Andrianopoulos [14], recently modified the ——
' S-theory by designating its mean value, S, the critical quantity for crack V]E;'_—4 |
9. . initiation, under mixed mode crack tip deformation. E]
ﬁ’: The above papers all relate to quasi-static crack extension. As for dynam- ;t::::::
ic crack curving criterion, Yoffe [15] and Sih [16], used the maximum dynamic _»_—jj::

“les o
| circumferential stress theory and minimum strain energy density theory, respect- ufa

A

ively to explain crack branching phenamena.
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The objective of the present study is to derive a dynamic crack curving
criterion applicable to both mode I and combined modes I and II crack tip de-
formation. To this goal, dynamic extension of two static crack curving criteria,
that is the maximum circumferential stress criterion and the minimum strain
energy density criterion at a critical distance ris was considered. The devel-
oped theoretical relations were evaluated numerically and the influence of U;;
and crack velocity on crack curving direction were deduced. Crack curving
angles predicted by the two dynamic crack curving criteria were then compared
with experimental results, obtained from past dynamic photoelastic investiga-

tion.

DYNAMIC CRACK CURVING CRITERIA

Elasto-dynamic Crack Tip Stress Field

The dynamic crack curving criteria, are derived from the near field, mixed
mode elasto-dynamic state of stress associated with a crack tip propogating at
constant velocity. This dynamic state of stress is given by Freund (17,18) in
termms of local rectangular and polar co-ordinates of (x,y) and (r,§), respec-
tively, with origin at the crack tip, and the mode I and Il dynamic stress
intensity factors, K; and K{y*, respectively. The authors [19] have added to
Freund's near field, dynamic state of stress the second order term of Oox which
is acting parallel to the direction of crack extension. This dynamic singular
crack tip stress field under mixed mode loading for small @ values differs from
the corresponding static stress field in that the largest principal singular
tensile stfess acts parallel to the x-axis, a fact which not only contributes to

crack curving but also to dynamic crack branching. Furthermore, this region

*The superscript "dyn" to identify dynamic stress intensity factor will not be

used in this paper, since all quantities refer to dynamic values.

-
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ahead of the running crack where IU;&|>G;; increases with increases in crack

speed and Gox even under pure mode-II crack tip deformation [19]. This ]

inevitable involvement of Gox forms the basis of incorporating Tox in the

dynamic crack curving criteria presented in this paper.

Maximum Circumferential Stress Theory

The ang]e,&c, at which circumferential stress,@ » is maximum, can be ob-
tained from the following, !
i) ) ﬁ
=0 des 7 0 ]
26 .5
where the added(@p> 0 is to assure fracture under tensile state of stress.

Equation (1), when evaluated in conjunction with a pure mode I dynamic crack tip

state of stress will yield a transcendental relation between the critical values

of B and r. Furthermore by setting & = 0 in Equation (1), we obtain

b = ,3;7,-. {(ﬁ ) V(c,c,,ca)} (2a)
where V@,c,,cz) = BICC){ 0+§)(2:-36,) ﬁ'——(l#*BS)-—/éS CSVS,.) (2b)

+/6(/+s ) ]

/+5;. (2c)
1 B (e) = 45:5,~0+55) f
|
" ey > 2 o
[; s=l-%] 5 s=[r&] @
f |

and c, ¢y and C, are the crack velocity, dilatational wave velocity, and

R wrope L Rer Y SEPIFG

= distortional wave velocity, respectively. It can be easily shown that for zero

crack velocity or ¢ = o, Equat1on (2a) reduces to Streit and Finnie's solution

(18] of r, = ,‘"( )
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Figure 1 shows the velocity effect on o which is plotted in a non-dimen-

sional form ofEEgl, where the dynamic r_ is always less than the corres-
3

ponding static o at experimentally observed crack velocities of 0 < c € 0.33

and is insensitive to the sign of Tox* The temminal crack velocity of c/cy = a

0.325, in Figure 1 where o = 0 concides with the terminal velocity predicted by

Yoffe [15]. 1

Minimum Strain Enerqgy Density Theory Q

According to this theory, the crack will extend to the location of the

minimum strain energy density factor, Smin’ or ‘
%g": 0 at ﬂ=0; (3)

The intensity of the strain energy density, S, for the state of plane strain can J

be written as d

> 2
S =08 %[(‘!"7) (o;z‘i' 039)—2)’(0_;&0'5) {-20;:‘9‘] (4)

where E and 9 are the modulus of elasticity and Poisson's ratio, respectively.
Substituting the dynamic mixed mode crack tip stresses into Equation (4) and 1

then into Equation (3) yields '

0-)x - 53] 3% +[¢ "”)0'5’9-90:&]———305’ +2a:,?gl}
H% 0ox {(,.;9%—9??_‘?}20 .

By setting Poisson's ratio )= 1[3 ,032 = 0 -as a crack velocity of cepo in
Equations (5), the static angular predictions in Reference [13] are recovered.

When a non-vanishing second order term ofo'(;'; is considered in Equation (5)

PrTREP TR
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yields four9¢val ues, a pair for Smax and another pair of Smin for given values
of c, KII/KI’ o and Tox Only the negative root of zcorresponding to positive
K{1/K; and the positive root of@ for negative KII/KI’ to the tensile loading
are of interest [13]. Numerical values of these&wi]l be discussed in the
following section.

Actual evaluation of Equation (3) will show that curving of a straight
crack propagating at the lower velocity can be considered only by incorporating
the nonsingular term ofo‘& in the minimum strain energy density criteria. Such
possibility of crack curving without KII values and under the minimum strain

energy criterion has not been considered by others.

Comparison of Maximum o0o0-and Minimum S Criterion

Figure 2 shows the predicted crack curving angles for crack velocities,
c/cl, from 0 to 0.25 by maximum stress and the minimum strain energy density
criteria when a'a'x = 0. Without the second order term, both criteria predicted
the same crack curving angles for much of the crack velocity range. Although
the crack curving angle at higher crack velocities are significant for lower
crack velocities of ¢/c <0.15, the predicted crack curving angle, which is
referred to as fracture angle from hereon, is almost constant and is in close
agreement with corresponding static fracture angles.

The effects of the non-singular term ofq‘& and reference radius o in
predicting the fracture angle by both maximum 0"59 and minimum S theories at
various crack velocities are shown in Figure 3 for®» = 1/3, and Kip/Ky = -0.1,
and@gs /Ky - -1.0 and 1.0. Note that fracture angle for negative @, ., are much
smal ler than those with positive Q_c-)x' Also, larger Yo results in larger changes

in the fracture angle. For larger values of r;, the differences in predicted

fracture angles due to maximum circumferential stress theory and minimum strain
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energy density theory are larger at higher crack velocities. This importance of

o value in characterizing the direction of the fracture angles is discussed in

Reference [14].

EXPERIMENTAL VERIFICATION

Dynamic Isochromatics:

For a single, pure mode-I or combined modes I and Il crack propagating at a i

constant velocity, the dynamnic crack tip isochramatic patterns together with the

Bouddie ol whaiLitbelh. SN

predicted path are shown in Figure 4. Changes in the remote stress, (Jox°

results in backward or forward tilting of the dynamic isochromatics. For a

given Gox® the change in the sign of KII’ results in a mirror image of the

isochranatics. Detailed discussion of the changes in dynamic isochromatics with

variations in KII/KI and US}/KI can be found in Reference [19].

Data Reduction Procedure

Experimentally determined dynamic isochromatics surrounding a running crack
i. often exhibits moderate unsymmetry. Such photoelastic patterns were heretofore
. considered experimental abnormalities and were ignored by averaging the unsym-
E( metric patterns during the data reduction process. Careful postmortem inspection ;
2 of the fracture specimens, however, show that the higher magnitudes of ﬁx of
isochranatics and slightly unsymmetric isochromatics are often associated with

slightly curved crack patterns. With the development of a data reduction

|

[
!l procedure [19] for evaluating dynamic K1 together with Kq and 5;; values, it
- became possible to investigate the above criteria by extracting Ky and K{; and

Tox from the previously recorded dynamic isochramatics surrounding running crack

it

L

L

}' tips of curved cracks. An optimization method developed by the authors based on
}

;‘ the overdeteministic least square procedure was .also used to extract the

| .
‘ ‘ dynamic three parameters KI’ Kt muiGE} from the recorded dynamic photoelastic

pattern surrounding a running crack [19,20].
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The dynamic crack curving criteria developed for pure mode-I loading con-
‘n ditions require accurate determmination of KI and q;}. Accuracy of the data re-
duction procedure used in this investigation was verified by using the above
data reduction procedure to calculate K; and (g, from previously generated
isochromatics generated by three parameters of KI’ 03}’ and A3 with KII =0

| [21]). The recovered two dynamic parameters KI and(r;; agreed within + 0.5% and
7 + 5%, respectively, with the given results. This series of numerical experi-
ments showed that the two parameter characterization procedure involving KI and

B 03§ should describe reasonably well the stress field in the vicinity of a running

b crack tip. i

The crack curving angle was measured along the crack path by averaging the
measured crack curving angle on front and back surfaces of the fractured speci-
men since the crack surfaces of some of the curved cracks were not perpendicular ]
f‘; to the specimen surfaces. The maximum variation between the front and back

crack curving angles was about 3 degrees for severely curved cracks. Similar
differences in out-of-phase crack curving were also observed by Williams et al.,
in their PMMA specimens [2].
_ ‘ Results
[ | Figure 5 shows three frames out of a 16 frame dynamic photoelastic record
of a curving crack in a Homalite-100 dynamic tear test (DTT) specimen of 9.58 mm
(3/8 in) thick, 88.9 x 400 mm (3 1/2 x 15 in). This beam with a blunt initial

crack of 6.4 mm (7/32 in) in length was impact loaded by a drop weight of 1.48

kg (3.25 1b) [22]. The crack emanated from the blunt saw-cut crack and propa-

gated through much of the height of the beam prior to curving near the region of
» ' impact loading. Further details of the experimental setup, crack velocity meas-

urements and dynamic calibration of the Hamalite-100 material used are found in a
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Reference [22]. Figure 6 shows Kys KII’(TS& and r, which is computed by Equa-
3 tion (2), obtained fram the dynamic photoelastic pattern preceding and immedi-
ately after the crack curving in Figure 5. KII is negligible in comparison to
KI and at the point of instability and pronounced fluctuation in(;;& is noted.
After crack curving KII and ﬁx increased while KI and crack velocity dropped
-ﬂ rapidly. ro was close to 1.5 mm throughout crack propagation and reached a
‘ minimum value of res 1 mm during the onset of crack curving.

Figure 7 shows a slightly curved crack and the associated Kis Kpp» Tox and
ro in a fracturing 9.53 mm (3/8 in) thick, 254 x 254 mm (10 x 10 in) single-
4 edge-notch (SEN) Hamalite-100 specimen [23]. Gradual increase and decrease of

K; and a very small Kt with a rapid fluctuation Of(IE} and ro are noted. Three

- SEN results were evaluated where KI reached a maximum value, KII was negligible
ij and(rg; was increasing prior to crack curving. At the onset of instability, a
g sudden drop in KI and 1arger'03; with KII = 0 are observed. ro dropped sharply
| to an average value of 1.5 mm at the point of instability. This minimum o
value will be referred to e which will be found to be a material parameter
associated with dynamic crack curving. The small negative KII’ which appeared
{ immediately after crack instability, resulted in a positive angle of crack
L | curving. This result is not only in agreement with the analytically predicted
| angles in Figure 3 but is also in agreement with similar observation in crack

X curving under stable crack growth conditions [24]. The rapid oscillations of o

in all the three SEN specimens appeared to be related to the rapid but opposing

oscillations inQox*

Figure 8 shows a curved crack and the associated, KI’ KII’(TBX and o in a
. Homalite-100, wedge-loaded, rectangular double cantilever beam (WL-RDCB)
specimen of 9.6 mm (3/8 in) thick and 76.2 x 152.4 mm (3 x 6 in) with a blunt

initial crack of le~gth 2.36 n (0.093 in). Experimental details of this series
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of tests can be found in Reference [25]. Fluctuations in dynamic fracture para-
g meters K, KII"TS& and o is noted all a]dng the curved crack path. The crack
curved continuously without any kinks and is a characteristic fracture path of
DCB specimens.

Figure 9 shows five frames out of a 16-frame dynamic photoelastic record of
a curving crack in a 9.53 mm (3/8 in) thick, 254 x 254 mm (10 x 10 in) Hama-
1ite-100 single edge notch (SEN) specimen toaded under fixed gripped tension.
The crack emanated from a small precrack 15Q}459c after impact by a flat-nosed
projectile. The severe stress wave reflections in this specimen caused the

crack to curve continuously in a zig-zag manner. Details of this experiment can

be found in Reference [26]. Figure 10 shows the corresponding KI’ KII’Uj;x and
u’é ro variations associated with the unsymmetric dynamic isochramatics in this EI
| test. Severe stress wave loading caused the crack to curve immediately after i
. propagation and re is about 1.35 mm at this crack kinking. Throughout crack
propagation,(r;; changed signs and is related to the zig-zagged crack path.

Fracture angles of curved cracks measured in nine dynamic photoelas’ .city

tests and the corresponding fracture angles computed by the maximumm and

t minimum S theories are summarized in the Table 1. Remarkable agreements in
experimentally measured and numerically computed results by both the theories,

using an experimentally measured re © 1.3 mm for Homalite-100 are noted. Crack 4

curving in our experiments for mode I, crack propagation ranged between 1_250 to
a minimum of 2° for severe to moderate curving.
DISCUSSIONS

The closed form elasticity solution for a circular arc crack under uniform

x stress field provides a siimple check on the accuracy of using the near field

solution of a straight crack in the results cited above. The static solution

i
‘ given by Panasyuk and Brezhnitskiy [27] in the vicinity of a circular arc crack ;

S T e TR
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with an included angle 20{ differ with straight crack solution only by a multi-

plication factor of

KIcurved - KIstraight Coso(/2/(1+$1'n20V2) (6a)
K Curved L SERATNt Ginatp s (1asindoe) (6b)
6, curved . § straight gi0la/(1sinog2) (6c).

where the superscripts “straight" and "curved'refer to crack tip parameters
associated with a straight and curved crack, respectively. As an estimate of
possible errors involved in using a straight crack solution to evaluate the
fracture parameters of a curved crack were determined by least square fitting
the above exact static solution of a curved crack and the corresponding solution
for a straight crack to the two extreme curved cracks associated with the last
data points in Figures 6 and 8. The resultant KI’ Kt ando;; of the straight
crack solutions are within 10%, 28% and 6%, respectively of the corresponding
solutions for circular arc cracks of & = 25 and 28°,  Thus, possible error
introduced by using a second order dynamic crack tip state of stress of a
straight crack in place of a curved crack should be negligible for most of the
curved crack problems ofX= 5~10° in this investigation.

The developed dynamic crack curving criterion shows the ]argeq‘a';( contrib-
utes to crack instability and is in agreement with Benbow and Roesler's conclu-
sion involving static experiments [28]. Cotterell [29-31] referring to Williams
analysis [32], showed that the crack path will be unstable when@g, is positive.
The above static crack stability criterion [28-31] correlates well with the

experimental results of DCB specimens but cannot explain dynamic crack curvings
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in fracture specimens of SEN, CT, and DTT where ()-o.x is negative. The proposed
criterion for the directional stability of a propagating crack is independent of
the sign of the(ﬁ5(, and is thus applicable to all crack curving data considered
in this paper.

As shown in Figure 3 the influence of non-singular stress is more pronounc-
ed for moderate values of o irrespective of the sign of KII/KI' This result
re-emphasizes the importance of the non-singular stress ternlgg;, which, when
neglected, can lead to inaccurate results as observed by Tirosh [33].

Considering the fact that dynamic photoelasticty experiments cited in this
paper were conducted by four different investigators over a period of ten years
with different shipments of Homal ite-100, the consistent results of re * 1.3 mm
is noticeable. In a critical review on r. associated with the minimum S criteri-
on of crack curving, Theocaris and Andriaopoulos (14) also determined experi-
mentally re = 1.3 mm (0.05") for polymethylmethacrylate.

Finally, the crack curving criterion by Karihaloo et al. [12] requires that
KII be known immediately before and after crack curving. The lack of sensitiv-
ity in this analysis precluded precise variations of the very small KII before

or after crack curving and thus this crack curving could not be checked.

CONCLUSIONS

1. A dynamic crack curving criterion based on the directional stability of a
running crack under pure mode-1 Toading is developed.

2.  Dynamic fracture angle under pure mode I and mixed mode [ and II conditions
can be predicted by using either the maximum circumferential stress or the
minimum strain energy density theories with the non-singular stress tenn(rgk-

3. Positive(r;x always enhances the crack curving and negative(f;; reduces the

fracture angle irrespective of the sign of KII/KI.
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4. Experimental results with and without KIl proved that re is a material

constant. The critical value of Hamalite-100 is r_ = 1.3 mm (0.05 in).

C

ACKNOWLEDGEMENT
The results reported in this paper were obtained through ONR Contract No.
00014-76-C-0600 NR 64-478. The authors wish to thank Drs. N. Perrone and Yapa

Rajapaske, ONR, for their support during the course of this investigation.

i
!
t
!




b i T e T O e O i Mo L L 2 ot 0 LSRR Y il

d
1
|
|

Page 13

TABLE I

SUMMARY OF EXPERIMENTAL AND

Total Number of Experiments:
Type of Fracture Specimen:
Number of Data Points:
Crack Velocity, c/clz
Ky (MPa m)
SIS

ox/KI

Experimental Fracture Angle
Associated with Crack Curving

Theoretical Prediction of
Fracture Angle

re (mm)

THEORETICAL RESULTS
9
DTT, SEN, WL-RDCB
81
0.03 to 0.21
0.50 to 1.59
-0.22 to 0.18
-2.89 to 4.04

-20° to 26°

-20° to 25°

1.0 to 1.5
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